Multi-Agent Schedule Optimization Method for Regional Energy Internet Considering the Improved Tiered Reward and Punishment Carbon Trading Model

Author:

Li Tianxiang,Xiao Qian,Jia Hongjie,Mu Yunfei,Wang Xinying,Lu Wenbiao,Pu Tianjiao

Abstract

Regional energy internet (REI) contains massive market agents, whose interests and objectives vary from each other. In consequence, it is challenging to stimulate the energy conservation and emissions reduction participation of each agent by the conventional schedule optimization method. This paper proposes a multi-agent schedule optimization method for REI considering the improved tiered reward and punishment carbon trading model. Firstly, the energy flow constraints and device constraints of REI are established. Secondly, to tighten restrictions on carbon emissions, the relative carbon emission is used as the criterion to establish the improved tied reward and punishment carbon trading model. Next, to analyze the real multi-agent game situation in the market, different agents are classified, and the objective functions are defined based on their revenue. Finally, a two-layer algorithm is used to solve the above multi-agent model. Simulation results verify that the proposed method can effectively reduce carbon emissions and significantly enhance the revenue of the region.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3