Day-Ahead Economic Optimal Dispatch of Microgrid Cluster Considering Shared Energy Storage System and P2P Transaction

Author:

Cao Siming,Zhang Hanlin,Cao Kai,Chen Meng,Wu Yi,Zhou Suyang

Abstract

With the increasing popularity of renewable energy, energy storage systems (ESSs) have now been used as an essential way to reduce energy bills and mitigate the impact of the uncertainty of renewable generators on the energy network. However, the high investment cost of ESS limits its application. This article proposes the concept of shared ESS (Shared-ESS) for microgrid owner/operator and applies it to the economic optimal dispatch of a microgrid cluster. In addition to the energy storage, the microgrids can achieve the peer-to-peer (P2P) transaction among each other with the use of the Shared-ESS, which significantly improves the energy utilization efficiency. The numerical analysis shows that the Shared-ESS can significantly reduce the energy bills of microgrid owner/operator, shift the usage of energy during peak time, and facilitate the renewable energy consumption.

Funder

State Grid Jiangsu Electric Power

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3