Event Detection and Identification in Distribution Networks Based on Invertible Neural Networks and Pseudo Labels

Author:

Yang Fan,Ling Zenan,Zhang Yuhang,He Xing,Ai Qian,Qiu Robert C.

Abstract

Anomalous event detection and identification are important to support situational awareness and security analysis in power grids. Particularly, the distribution network is with complicated topology, variable load behaviors, and integration of nonlinear distributed generators (DGs), which is difficult to implement complete modeling mathematically. With the deployment of advanced measurement devices such as μPMUs in distribution networks, massive data containing rich system status information becomes available. In this paper, a framework for event detection, localization, and classification is studied to extract event features from measurements in distribution networks. Specifically, a method based on an invertible neural network (INN) is employed to model the complex distributions of normal-state measurements offline in a flexible way. It then establishes explicit likelihoods as the indicator to enable real-time event detection. Furthermore, a Jacobian-based method is utilized for spatial localization. Finally, as the events in practical power grids are mostly recorded unlabeled, the pseudo label (PL) based approach, superior in the separating ability for events under a low labeling rate, and is used to implement event classification. Several typical types of events simulated in the IEEE 34-bus system and real-world cases in a low-voltage system verify the effectiveness and superiorities of the framework.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference23 articles.

1. Anomaly Detection, Localization and Classification Using Drifting Synchrophasor Data Streams;Ahmed;IEEE Trans. Smart Grid,2021

2. Remixmatch: Semi-supervised Learning with Distribution Alignment and Augmentation Anchoring;Berthelot,2019

3. Online Conditional Anomaly Detection in Multivariate Data for Transformer Monitoring;Catterson;IEEE Trans. Power Deliv.,2010

4. Nice: Non-linear Independent Components Estimation;Dinh,2014

5. Density Estimation Using Real Nvp;Dinh,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3