Author:
Hu Shunwei,He Liping,Zhao Haodong,Liu Huawei,Liu Xueqiang,Qiu Jianlong
Abstract
In this paper, the voltage and frequency regulation of microgrid with unknown disturbances and non-linear dynamics was studied. The disturbance observer was designed and the sliding mode control (SMC) method was used to realize the secondary regulation of voltage and frequency. First, a distributed secondary control protocol was designed to reduce the communication burden between generators and to solve voltage and frequency deviations. Second, a consensus protocol for secondary control of voltage and frequency was designed, based on the idea of multi-agent consensus, to indirectly ensure that the voltage and frequency to be adjusted reach the reference values when the consensus is realized. In addition, considering unknown disturbances in the microgrid, a sliding mode control strategy, based on a disturbance observer, was designed to overcome the influence of disturbances and to reduce chatter. This SMC scheme ensured finite time accessibility of the sliding mode surface. This design provides sufficient conditions for voltage and frequency regulation. The effectiveness of this design scheme was verified through simulation.
Funder
National Natural Science Foundation of China
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献