Search strategy and line association analysis of cascading failure accident chain in new energy power systems

Author:

Cheng Xueting,Liu Wenxu,Bao Yueshuang,Liu Xinyuan

Abstract

As the penetration rate of new energy in the power system gradually increases and the complexity of cascading faults increases, it is of great significance for the power system to comprehensively explore the chain of cascading faults in the new energy power system and quickly determine the closely related lines in the cascading faults. In response to the lack of consideration in existing research of the changes in the importance of transmission lines after the introduction of new energy, this paper proposes a cascading failure prediction index that integrates the importance and operational status of transmission lines in new energy power systems and applies it to the search for cascading failures in new energy power systems. First, the development characteristics of cascading faults were analyzed, and the main factors influencing cascading faults were identified: the importance of the transmission line and operating status of the new energy power system. Based on these factors, a prediction index for cascading faults was established, and the accident chain was searched using this index. Then, the FP-growth algorithm was used to analyze the lines in the fault chain concentration, and based on the analysis results, the correlation relationship suitable for the cascading failure lines in the new energy power system was determined. Finally, a simulation was conducted on an IEEE 10 machine 39 node system containing new energy wind turbines, and the results verified the effectiveness of the proposed indicators and strategies.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference18 articles.

1. Impacts of wind power uncertainty on grid vulnerability to cascading overload failures;Athari;IEEE Trans. Sustain. Energy,2018

2. A power flow transfer entropy based AC fault detection method for the MTDC wind power integration system;Cao;IEEE Trans. Ind. Electron.,2021

3. Research on power grid prevention strategy considering voltage stability and chain fault triggering;Deng;Smart Power,2022

4. Vulnerability analysis of transmission system cascading faults based on risk theory;Fang;Electr. Autom.,2022

5. Risk assessment of grid cascading failure accident chain considering typhoon impact;Huang,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3