Effect of Dual-Flow Channel Structures on Electrochemical CO2 Reduction in Proton Exchange Membrane Electrolyzers

Author:

Na Youngseung,Ha Min Gwan,Park Hyun S.,Park Hee Young,Kim Hyoung-Juhn,Henkensmeier Dirk,Yoo Sung Jong,Kim Jin Young,Lee So Young,Jang Jong Hyun

Abstract

Greenhouse gases such as carbon dioxide and methane are responsible for intensifying global warming. Consequently, a reduction in power plant outputs and an increase in capture and storage on-site are required to reduce greenhouse gas emissions. Recently, research has focused on an electrochemical CO2 reduction method because the amount of CO2 reduction can be controlled by adjusting the operating voltage. However, to scale up the electrochemical system while maintaining a high conversion rate in a large cell, a suitable flow field of the cell must be optimized. The transparent cell structure presented in this study allows visualization of the distribution of the two-phase flow. Accordingly, dual-flow channels consisting of main and sub-channels have been designed. Furthermore, multiple configurations of the dual-flow channels and locations of the catalyst layer have been compared. The interdigitated sub-channels and inverted layered cell structures can supply gas and liquid to the catalyst layer via distinct pathways, allowing for uniform flow distribution to each channel.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3