Torrefaction and Pelleting of Wheat and Barley Straw for Biofuel and Energy Applications

Author:

Agu Obiora S.,Tabil Lope G.,Mupondwa Edmund,Emadi Bagher

Abstract

Microwave (MW)-assisted torrefaction and pelleting could enhance biomass fuel properties and energy applications. Plastic wastes are considered as a replacement source binder in pellets to minimize their effect on the environment as pollutants. High-density polyethylene (HDPE), an extractable plastic from recycling waste, was investigated as a binder for torrefied wheat and barley straw pellets. Fuel pellet characteristics, such as durability, density, tensile strength, and water absorption, were used to evaluate the pellets produced from a single pelleting test. The results showed that the addition of HDPE as a binder significantly increased the pellet quality in terms of density (686.12–982.93 kg/m3), tensile strength (3.68 and 4.53 MPa) for wheat and barley straw, and reduced ash content of the pellet from 10.34 to 4.59% for barley straw pellet and 10.66 to 3.88% for wheat straw pellets. The higher heating value (HHV) increased with increasing biochar mix and HDPE binder blend. The highest HHV value observed for barley straw was 28.34 MJ/kg, while wheat straw was 29.78 MJ/kg. The study further indicated that MW torrefaction of biomass-biochar mix with HDPE binder reduced the moisture adsorption of wheat and barley straw pellets, which can significantly improve their storage capability in humid locations. The moisture uptake ratio for MW-torrefied barley straw pellets was 0.10–0.25 and wheat straw pellets 0.11–0.25 against a moisture uptake ratio of 1.0 for untreated biomass. MW torrefaction of wheat and barley straw with biochar and HDPE binder addition during pelleting is a promising technique to improve biomass fuel pellet properties.

Funder

BioFuelNet Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3