Author:
Zheng Yingjun,Chen Feng,Yang Hongming,Su Sheng
Abstract
Electricity theft of low voltage (LV) users could result not only in the escalation of power loss but also in dangerous electric shock. Since LV users are served by distribution transformers, electricity theft of an LV user will cause line loss escalation of the associated distribution serving zone (DTSZ). Therefore, it seems promising to identify anomaly users of electricity theft with a Granger causality test to find out the user causing an escalation of line loss in DTSZ with time series of users’ usage and line loss. However, meters of LV users in severe environments occasionally suffer from communication failure to upload metering data to the head end of advanced metering infrastructure (AMI), which could distort the daily electricity usage of the associate user. Consequently, it could cause false alarms unavoidably once we detect electricity theft with these distorted data. Since the distribution transformer unit (DTU) collects metering data of LV users within associate DTSZ without distortion, an edge computing–based electricity theft detection approach is proposed in this article. The correlation between line loss of a DTSZ and electricity usage of anomaly users of electricity theft is first analyzed. Thereafter, the Granger causality test is used to identify anomaly users with authentic usage data with edge computing in DTU. Finally, the abnormal data and the data repaired by different missing data filling algorithms are used on the main station to detect electricity theft. Numerical simulation suggests that although missing data completion could recover information in missing data partially, it could result in notable false positive alarms in electricity theft, while the proposed method based on edge computing can completely eliminate the data distortion caused by communication failure.
Funder
National Natural Science Foundation of China
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Reference36 articles.
1. Transition towards Higher Penetration of Renewables: an Overview of Interlinked Technical, Environmental and Socio-Economic Challenges;Chen;J. Mod. Power Syst. Clean. Energy,2019
2. Adaptive Extreme Edge Computing for Wearable Devices;Covi;Front. Neurosci.,2021
3. Operational Planning of Centralized Charging Stations Utilizing Second-Life Battery Energy Storage Systems;Deng;IEEE Trans. Sustain. Energy,2021
4. Sparse Fault Degradation Oriented Fisher Discriminant Analysis Based Fault Trace;Fan;Control Eng. China,2019
5. Information Physical System of Active Distribution Network Based on Edge Computing;Gong;Power grid Technol.,2018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献