A comprehensive review on EV power converter topologies charger types infrastructure and communication techniques

Author:

Vishnuram Pradeep,R Narayanamoorthi,P Suresh,K Vijayakumar,Bajaj Mohit,Khurshaid Tahir,Nauman Ali,Kamel Salah

Abstract

The energy transition is a crucial effort from many sectors and levels to create a more integrated, carbon-neutral society. More than 20% of all greenhouse gas emissions are attributed to the transportation sector, predominantly concentrated in metropolitan areas. As a result, various technological hurdles are encountered and overcome. It facilitates the adoption of electric vehicles (EVs) run on renewable energy, making them a practical option in the fight against climate change and the completion of the energy revolution. Recent developments suggest that EVs will replace internal combustion engine (ICE) during the next few months. The EV either gets all of its power from batteries and ultra capacitors or some of it from both. In a plug-in electric vehicle, the battery or ultra-capacitor is charged by an AC supply connected to a grid line. In a hybrid electric vehicle, the ICE charges the battery or ultra-capacitor. Regenerative braking is another way to charge the battery from the traction motor. In a plug-in electric vehicle, the energy from of the battery or ultra-capacitor is put back into the AC grid line. Electronic converters are essential to converting power from the grid line to the traction motor and back again. This paper examines the current state of the electric vehicle market throughout the world and its potential future developments. Power electronics converters (PEC) and energy storage devices significantly impact electric vehicles’ efficiency. Furthermore, general opinions about EVs are soon in this sector, as well as research topics that are still open to industry and University researchers.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference117 articles.

1. Interworking of DSRC and cellular network technologies for V2X communications: A survey;Abboud;IEEE Trans. Veh. Technol.,2016

2. Renewable and non-renewable energy, regime type and economic growth;AdamsKlobodu;Renew. Energy,2018

3. Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids;Aggeler,2010

4. Dynamic load control at a bidirectional DC fast charging station for PEVs in weak AC grids;Ahmadi,2015

5. Video transmission using device-to-device communications: A survey;Ahmed;IEEE Access,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3