Si/Cu composite as anode material for lithium-ion batteries

Author:

Zeng Hong,He Yawen,Chamas Mohamad

Abstract

An Si/Cu composite anode was prepared using a facile solid mechanosynthesis method and wet chemical etching. Phase transition and morphologies were investigated on pristine and as-synthesized composites. Effects of presence of Al80Si20 and super p carbon on ball-milling were investigated. Moreover, the etching effect was compared with that of pristine Cu–Zn and composites by addition of NH4Cl. The results of X-ray diffraction patterns, scanning-electron-microscopy morphological images, and focus-ion-beam/energy-dispersive mapping demonstrated that the formation of the intermetallic, elemental distribution, homogeneity, and dezincification is involved with the addition of Al, super p carbon, and etching additive NH4Cl. Super p carbon avoided the formation of Cu–Si, while Al made the more homogenous distribution of Si/Cu. The two synthesized types of Si/Cu composites deliver specific capacity/retention rates of 608 mAhg−1/66.4% (Si/Cu from pure Si) and 707 mAhg−1/81.1% (Si/Cu from Al80Si20) after 200 cycles, respectively. The higher stability of the galvanostatic cycling and capability performance resulted from the homogeneity of Si and Cu.

Funder

National Natural Science Foundation of China

Southwest Petroleum University

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3