Pipe Insulation Evaluation for Low-Temperature District Heating Implementation in South Korea

Author:

Usman Muhammad,Kim Yong Ki

Abstract

Future energy systems will comprise 100% renewable energy and involve high integration of energy systems. District heating (DH) and cooling systems will be an undeniable part of future energy systems, as they facilitate high-efficiency, low-cost, and clean production. Low-temperature district heating (LTDH) is one of the candidates for future district heating systems, where the supply temperature is 60°C or below. Reducing heat losses from the pipe network in DH systems is challenging. Improving the insulation standards in DH pipes can decrease heat and temperature losses in the pipe networks. This study employs computational fluid dynamics to evaluate the optimum insulation thickness based on the material and digging costs in South Korea. A micro hybrid DH system with natural gas run fuel cell, heat pump and solar thermal is proposed in this study. An evaluation of the system with a 500 m pipe network system supplying hot water at 60°C with polyethylene, ethylene propylene diene monomer rubber, and polyurethane as insulation materials using ANSYS Fluent 17.2 shows that the heat losses are minimal when using PU foams. A cost estimation analysis showed that 32 mm was the optimum insulation thickness for achieving heat losses below 20 W/m and minimum material and digging costs when burring the pipeline network in the ground.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3