A reliable data-driven state-of-health estimation model for lithium-ion batteries in electric vehicles

Author:

Zhang Chaolong,Zhao Shaishai,Yang Zhong,Chen Yuan

Abstract

The implementation of a precise and low-computational state-of-health (SOH) estimation algorithm for lithium-ion batteries represents a critical challenge in the practical application of electric vehicles (EVs). The complicated physicochemical property and the forceful dynamic nonlinearity of the degradation mechanism require data-driven methods to substitute mechanistic modeling approaches to evaluate the lithium-ion battery SOH. In this study, an incremental capacity analysis (ICA) and improved broad learning system (BLS) network-based SOH estimation technology for lithium-ion batteries are developed. First, the IC curves are drawn based on the voltage data of the constant current charging phase and denoised by the smoothing spline filter. Then, the Pearson correlation coefficient method is used to select the critical health indicators from the features extracted from the IC curves. Finally, the lithium-ion battery SOH is assessed by the SOH estimation model established by an optimized BLS network, where the BLS network is formed through its L2 regularization parameter and the enhancement nodes’ shrinkage scale filtrated by a particle swarm optimization algorithm. The experimental results demonstrate that the proposed method can effectively evaluate the SOH with strong robustness as well as stability to the degradation and disturbance of in-service and retired lithium-ion batteries.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3