Multienergy Load Forecasting for Regional Integrated Energy Systems Considering Multienergy Coupling of Variation Characteristic Curves

Author:

Wang Shouxiang,Wu Kaixin,Zhao Qianyu,Wang Shaomin,Feng Liang,Zheng Zhijie,Wang Guo

Abstract

Multienergy load forecasting (MELF) is the premise of regional integrated energy systems (RIES) production planning and energy dispatch. The key of MELF is the consideration of multienergy coupling and the improvement of prediction accuracy. Therefore, a MELF method considering the multienergy coupling of variation characteristic curves (MELF_MECVCC) for RIES is proposed. The novelty of MELF_MECVCC lies in the following three aspects. 1) For the trend stripping and volatility extraction of multienergy load time series, the extreme-point symmetric mode decomposition-sample entropy (ESMD-SE) method is introduced to decompose and reconstruct the variation characteristic curves of multienergy, including trend curve and fluctuation curve. 2) The multienergy coupling of the variation characteristic curves is considered to reflect the variation characteristics of the multienergy loads. 3) Different methods are applied according to different variation characteristics; i.e., the combined method based on multitask learning and long short-term memory network (MTL-LSTM) is applied to predict the trend curve with strong correlation and the least square support vector regression (LSSVR) method is applied to predict the fluctuation curve with strong volatility and high complexity. Based on the actual data set of the University of Texas in Austin, the MELF_MECVCC model is simulated and verified, which shows that the model reduces the mean absolute percentage error (MAPE) and the root mean square error (RMSE) and fits better with the original load and has higher prediction accuracy, compared with current advanced algorithms.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3