A flame combustion model-based wildfire-induced tripping risk assessment approach of transmission lines

Author:

Zhou Enze,Wang Lei,Wei Ruizeng,Liu Shuqing,Zhou You

Abstract

With the intensification of global climate change, the frequency of wildfires has markedly increased, presenting an urgent challenge in assessing tripping failures for power systems. This paper proposes an innovative method to evaluate the spatial wildfire-induced tripping risk of transmission lines based on a flame combustion model. Firstly, Bayes theory is employed to assess the spatial probability of wildfire occurrence. Subsequently, Wang Zhengfei’s flame combustion model is utilized to estimate the potential flame height of wildfires along the transmission corridor. Thirdly, the insulation breakdown risk of the transmission line is calculated based on the relative height difference between the flame and the transmission line. Finally, the spatial wildfire-induced tripping risk of the transmission line is then determined by combining the wildfire occurrence probability and the insulation breakdown risk. A case study conducted in Guizhou province, China validates the accuracy of the proposed model. Utilizing ArcGIS, the wildfire occurrence probability distribution in Guizhou is visualized to enhance the efficiency of operation and maintenance. The results indicate that over 80% of wildfire incidents occurred in areas with occurrence probabilities exceeding 50%.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3