A Wind Power Prediction Method Based on DE-BP Neural Network

Author:

Li Ning,Wang Yelin,Ma Wentao,Xiao Zihan,An Zhuoer

Abstract

With the continuous increase of installed capacity of wind power, the influence of large-scale wind power integration on the power grid is becoming increasingly apparent. Ultra-short-term wind power prediction is conducive to the dispatching management of the power grid and improves the operating efficiency and economy of the power system. In order to overcome the intermittency and uncertainty of wind power generation, this article proposes the differential evolution–back propagation (DE-BP) algorithm to predict wind power and addresses such shortcomings of the BP neural network as its falling into local optimality and slow training speed when predicting. In this article, the DE algorithm is used to find the optimal value of the initial weight and threshold of the BP neural network, and the DE-BP neural network prediction model is obtained. According to the data of a wind farm in Northwest China, the short-term wind power is predicted. Compared with the application of the BP model in wind power prediction, the results show that the accuracy of the DE-BP algorithm is improved by about 5%; compared with the genetic algorithm–BP model, the prediction time is shortened by 23.1%.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference35 articles.

1. A Review on Different Methods of Wind Power Forecasting;Agarwal,2018

2. An Hour Ahead Wind Speed Prediction by Kalman Filter;Babazadeh,2012

3. Awnn-assisted Wind Power Forecasting Using Feed-Forward Neural Network;Bhaskar;IEEE Trans. Sustain. Energ.,2012

4. Genetic Algorithms: Theory and Applications;Bodenhofer,2003

5. An Artificial Neural Network Approach for Short-Term Wind Power Forecasting in portugal;Catalao,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3