Medium-voltage feeder blocks division method considering source-load uncertainty and characteristics complementary clustering

Author:

Zheng Jieyun,Zhang Zhanghuang,Shi Ying,Chen Zhuolin

Abstract

Existing feeder block division methods fail to consider the complementary characteristics and uncertainty between power sources and loads, which result in excessive feeder blocks, low inter-block balance, and significant disparity in net load peak-valley difference. To address these issues, a medium-voltage feeder block division method that considers the uncertainty and complementary characteristics of sources and loads is proposed. Firstly, based on the probability density characteristics of sources and loads, an uncertainty model of DG output and load demand is established. Secondly, considering the constraints of block maximum load rate and feeder non-crossing, a feeder block division model is established. Additionally, a set of center circles is defined, and based on this, an improved K-means clustering algorithm is proposed. The initial clustering centers based on the center circles is set, and the clustering centers based on the arcs of the center circles corrected. And the weighted distances between power sources and clustering centers are calculated. An algorithm flow for improved K-means clustering feeder block division is designed accordingly. Finally, the case studies show that the result of block division is improved.

Publisher

Frontiers Media SA

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3