Data-driven methods for situation awareness and operational adjustment of sustainable energy integration into power systems

Author:

Jin Shi,Liu Qian,Zhang Wenlu,He Zhihong,He Yuxiong,Zhang Lihong,Liu Yuan,Xu Peidong,Zhang Xiao,He Yuhong

Abstract

In the context of increasing complexity in power system operations due to the integration of renewable energy sources, two main challenges arise: accurate short-term wind power forecasting and power flow convergence control. Accurate wind power forecasting plays a crucial role in power system scheduling, while controlling power flow convergence is essential for system stability. This study proposes a concise short-term wind power generation prediction model that combines a feature selection-based convolutional neural network-bidirectional long short-term memory network (CNN-BiLSTM) model. By effectively screening multidimensional feature datasets, the model optimizes the selection of highly correlated feature parameters and assigns weights to input data based on feature correlation. The CNN-BiLSTM combination model is then employed to establish a predictive model for wind power generation based on multiple features. Additionally, this study introduces an automatic adjustment model for power flow convergence using the D3QN (Double Dueling Q Network) reinforcement learning algorithm. This addresses the challenge of power imbalance leading to flow non-convergence, enabling effective control of power flow convergence and adaptive adjustment of operating modes. Experiments conducted using the KDD Cup 2022 wind power prediction dataset validate the wind power prediction method. The results demonstrate that the CNN-BiLSTM model effectively utilizes time-series data, surpassing other neural networks in prediction accuracy. Simulation results based on the PYPOWER case39 standard case reveal that the reinforcement learning model’s reward value increases with training rounds and stabilizes at 40. Remarkably, more than 72% of abnormal flow samples achieve rapid convergence within 10 steps, affirming the proposed method's efficacy and computational efficiency. The findings of this study contribute to enhancing the accurate awareness of new energy integration into power systems and provide a novel adaptive control method for power flow.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference36 articles.

1. An artificial neural network approach for short-term wind power forecasting in Portugal;Catalão

2. Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis;Fu;Improv. hybrid GWO-SCA Optim. ELM,2019

3. Primal–dual interior-point algorithm for electricity cost minimization in a prosumer-based smart grid environment: A convex optimization approach;Gbadega,2022

4. Grid-Forming Wind: Getting ready for prime time, with or without inverters;Gevorgian,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3