Author:
Ichou R.,Clavel J. B.,Bonthoux S.,Bernard F.,Taforeau J.,Malvagi F.
Abstract
The work presented in this paper deals with bias and uncertainty quantification on nuclear fuel inventory in a pressurized water reactors core during normal operation. This actinides and fission products inventory is used as input data for radiological releases evaluation in case of a severe accident. The different sources of bias and uncertainty, as well as their impacts for UO2 and MOX fuel at the assembly and core levels, are discussed. Uncertainty sources include technological uncertainties (e.g. dimensions, irradiation history, temperatures), modeling assumptions, uncertainties related to the resolution methods used in the calculation tools and nuclear data uncertainties. For each source of uncertainty investigated in this paper, an evaluation of the associated biases and uncertainties on nuclide inventory is performed. It is shown that, among the sources of bias and uncertainties studied, spread due to nuclear data as well as the bias and uncertainties due to “infinite lattice approximation” are the most significant ones, for the isotopes of interest.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献