Modelling and optimization of phase change materials (PCM)-based passive cooling of solar PV panels in multi climate conditions

Author:

Durez Asif,Ali Muzaffar,Waqas Adeel,Nazir Kamran,Kumarasamy Sudhakar

Abstract

To address the increasing energy demand, replacing conventional energy systems with non-conventional resources like solar power generation is crucial. Photovoltaic (PV) panels play a significant role in harnessing solar energy and converting it into electrical power. However, the solar cells’ temperature dramatically influences the panel’s performance, particularly in hot climates. In this study, a detailed mathematical model is developed and conducted simulations using three different phase change materials (PCMs)—RT21, RT35, and RT44—integrated with PV panels in various climate conditions worldwide during the summer season. An optimization model is also created using MATLAB and a genetic algorithm to identify the most suitable PCM for specific climate zones. The findings revealed that incorporating PCM resulted in a surface temperature reduction of PV panels, leading to a 6% increase in efficiency and a 16% boost in electrical output. Specifically, when using a PCM with a melting point of 21°C, the maximum cell temperature during summer operation decreased from 65°C to 38°C. Similar temperature reductions were observed when using PCMs with melting points of 35°C and 44°C. Current analysis demonstrates that the correct selection of a phase change material can decrease panel temperature by approximately 39% in June. Furthermore, PCM with a melting point of 21°C exhibited the best outcomes in terms of maximum electrical performance, efficiency, and PV cell temperature reduction.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3