Edge intelligence enabled optimal scheduling with distributed price-responsive load for regenerative electric boilers

Author:

Fan Dongchuan,Wang Ruizhe,Qi Haonan,Deng Xiaoyun,Chen Yongdong,Liu Tingjian,Liu Youbo

Abstract

Heat supply accounts for a substantial amount of terminal energy usage. However, along with price rises in primary energy, there is an urgent need to reduce the average cost of energy consumption during the purchasing of thermal services. Electric heating, an electricity-fed heating production and delivery technology, has been suggested as a promising method for improving heating efficiency, due to the ease of scheduling. However, the traditional centralized operating methods of electricity purchasing rely on explicit physical modeling of every detail, and accurate future predictions, the implementation of which are rarely practical in reality. To facilitate model-free decisions in the field of electricity purchasing, heat storage, and supply management, aimed at cost saving in a real-time price environment, this study proposes a scheduling framework based on deep reinforcement learning (DRL) and the existence of responsive users. First, the structure of a distributed heating system fed by regenerative electric boilers (REBs), which facilitate shiftable heat-load control, is introduced. A terminal heat demand response model based on thermal sensation vote (TSV), characterizing the consumption flexibility of responsive users, is also proposed. Second, due to thermal system inertia, the sequential decision problem of electric heating load scheduling is transformed into a specific Markov decision process (MDP). Finally, the edge intelligence (EI) deployed on the demand side uses a twin delayed deterministic policy gradient (TD-3) algorithm to address the action space continuity of electric heating devices. The combination of a DRL strategy and the computing power of EI enables real-time optimal scheduling. Unlike the traditional method, the trained intelligent agent makes adaptive control strategies according to the currently observed state space, thus avoiding prediction uncertainty. The simulation results validate that the intelligent agent responds positively to changes in electricity prices and weather conditions, reducing electricity consumption costs while maintaining user comfort. The adaptability and generalization of the proposed approach to different conditions is also demonstrated.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3