Enhancing grid-connected inverter performance under non-ideal grid conditions: a multi-functional multiplexing control strategy

Author:

Bao Xianwen,Zhang Lirong

Abstract

Compared to the traditional thermal power generation, new energy sources, such as wind and photovoltaic systems, are more vulnerable to the effects of non-ideal power grids due to their limited capacity. This susceptibility can jeopardize the safe operation of power equipment, degrade power output quality, and lead to non-compliance with grid-connected specifications. The LCL-type grid-connected inverter is a typical nonlinear system that weakens the controllability of the grid-connected energy. To address these challenges, this study employs feedback linearization theory to transform the inverter into a standard linear system. Subsequently, it utilizes linear system methodologies to develop robust control laws, ultimately introducing a multi-functional multiplexing control strategy for grid-connected inverters based on feedback linearization and Hamilton-Jacobi-Issacs inequality. Simulation results demonstrate that this multi-functional strategy outperforms traditional grid-connected inverter control schemes, effectively mitigating issues related to low short-circuit ratios, voltage fluctuations, imbalances, harmonics, and other non-ideal grid conditions. Furthermore, it significantly expands the system’s adaptability to varying weak grid impedances.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3