Master–slave game-based optimal scheduling of community-integrated energy system by considering incentives for peak-shaving and ladder-type carbon trading

Author:

Dai Fengzhe,Jiang Fei,Chen Lei,Wu Yongfei,Xiao Changlin

Abstract

To alleviate the challenges posed by high energy consumption, significant carbon emissions, and conflicting interests among multiple parties in a community-level microgrid, the authors of this study propose a master–slave game-based optimal scheduling strategy for a community-integrated energy system (CIES). First, we analyze the decision variables and revenue-related objectives of each stakeholder in the CIES, and use the results to construct a framework of implementation. Second, we develop a model to incentivize peak regulation and a ladder-type carbon trading model that consider the correlation between the load owing to residential consumers, the load on the regional grid, and the sources of carbon emissions. Third, we propose a master–slave game-based mechanism of interaction and a decision-making model for each party to the game, and show that it has a Stackelberg equilibrium solution by combining genetic algorithms and quadratic programming. The results of evaluations showed that compared with an optimization strategy that considers only the master–slave game, the proposed strategy increased the consumption surplus of the user aggregator by 13.65%, the revenue of the community energy operator by 7.95%, increased the revenue of the energy storage operator, reduced CO2 emissions by 6.10%, and adequately responded to peak-cutting and valley-filling by the power grid company.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3