Power Balance Partition Control Based on Topology Characteristics of Multi-Source Energy Storage Nodes

Author:

Cheng Songqing,Teng Yun,Zuo Hao,Chen Zhe

Abstract

Aiming at the power balance control of multi-source energy storage grid in the case of a high proportion of new energy grid connection. In this article, a power grid dynamic partition method based on the Markov energy field principle and a priori knowledge model is proposed. Combined with the coordinated dispatching of power grid source-load, a two-layer power balance partition control model based on the topological characteristics of multi-source energy storage nodes is established. First, in the upper-layer model, the energy homogenization method of multi-source energy storage nodes is studied, and the Markov energy field model of power grid node partition based on energy interaction constraints between nodes is established to partition the power grid initially. Combined with the prior model of node dynamic partition, the initial partition is dynamically optimized to realize the dynamic partition of the multi-source energy storage grid. Then, in the lower-layer model, the source-load coordinated dispatching model in the power grid partition area is established to realize the dynamic partition control of the power grid. Finally, based on the real operation data of a northeast power grid and IEEE39 node system, a dynamic partition power control simulation model of a multi-source energy storage power grid is established. The simulation results and analysis show that the dynamic partition power control strategy proposed in this article can effectively improve the regulation ability and economy of the power grid.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference25 articles.

1. Network Partition and Voltage Coordination Control for Distribution Networks with High Penetration of Distributed PV Units;Chai;IEEE Trans. Power Syst.,2018

2. Photovoltaic Energy Storage System Based on Smart Battery and its Control Strategy[J];Chao;Renewable Energy Resources,2022

3. Research on Homogenization Modeling and Planning Method of Thermoelectric Combined System;Feng,2017

4. Multi-time-scale Scheduling Optimization of Regional Multi-Energy Systems Considering Source-Load Uncertainty;Gu,2021

5. Short-Term Wind Power Prediction Based on Deep Belief Network[J];Guili;Acta Energiae Solaris Sinica,2022

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3