Study on the irrigation uniformity of impact sprinkler under low pressure with and without aeration

Author:

Qureshi Waqar Ahmed,Xiang Qingjiang,Xu Zhengdian,Fan Zhizun

Abstract

The distribution of water deteriorates when the operating pressure of an impact sprinkler (IS) decreases to some level. The aeration jet method is utilized to form an aeration impact sprinkler (AIS), aiming to improve the uniformity of water distribution under low pressure. Based on the structures of a 20PY2 impact sprinkler, an IS and AIS with the same sprinkler discharge were studied under operating pressures range between 150 and 250 kPa. A square test zone was formed by the four sprinklers, and the combined irrigation experiment was conducted under windless conditions. The results showed that the water loss ranged from 3% to 9.5% in all 18 test schemes. The coefficient of uniformity (CU) and distribution uniformity (DU) were used to quantify the degree of uniformity. The AIS had an approximately 3%–7% greater CU than the IS, which resulted in the CU reaching the specified value in the IS standard when the sprinkler functioned under low operating pressure. A linear relationship was found between the CU and DUlq. The uniformity of water distribution clearly changed with the operating pressure (150 kPa, 200 kPa, and 250 kPa) but decreased slightly with the increase in combination spacing (1 R, 1.1 R, and 1.2 R). In addition, the results of field experiment were compared with those of the simulation developed from a single sprinkler indoor experiment based on the water distribution radial curve. The simulated coefficient of uniformity was highly consistent with the experimental data and had an error of <7%. A sprinkler water jet with the aeration method was proven to be a feasible solution to reduce the operating pressure.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference33 articles.

1. Predicting field distribution of sprinkler systems;Branscheid;Trans. ASAE,1986

2. Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain;Cai;J. Integr. Agric.,2020

3. Method for evaluating irrigation systems;Criddle;Agric. Handb.,1956

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3