Sulfur Poisoning and Performance Recovery of SOFC Air Electrodes

Author:

Hong Junsung,Anisur M. R.,Heo Su Jeong,Dubey Pawan Kumar,Singh Prabhakar

Abstract

The sulfur poisoning and performance recovery of the state-of-the-art SOFC cathodes (La0.80Sr0.20)0.95MnO3±δ (LSM) and (La0.60Sr0.40)0.95Co0.20Fe0.80O3δ (LSCF), have been studied. Electrochemical impedance spectroscopy measurements of LSCF|GDC and LSM|YSZ half-cells are carried out in alternating atmospheres of air and SO2–air at 700°C for hundreds of hours. In the presence of SO2, the electrochemical performance of both the cells decays with ohmic and non-ohmic losses, owing to the absorption and chemical interaction of SO2 with the electrodes. In LSCF, the SrO segregated on the surface tends to absorb and react with SO2, forming SrSO4 followed by the exsolution of Co-Fe. As for LSM, SO2 is absorbed onto the Sr-rich areas of LSM, including the active reaction sites near the TPBs, leading to Sr exsolution and SrSO4 formation, leaving a Sr-deficient LSM. During the subsequent exposure to air, the performance of the sulfur-contaminated LSM is almost restored. The LSM particles, exposed to alternating atmospheres of air and SO2-air during the electrochemical tests, show a relatively clean surface with sparsely distributed SrSO4 particles, indicating a high stability against sulfur poisoning. It is suggested that the loosely adsorbed SO2 at the TPBs is readily swept away by the SO2-free air flow, recovering its ORR activity, whereas the Sr-deficient LSM due to Sr-exsolution stays modified, contributing to the incomplete performance restoration. Unlike the case of LSM, the performance of the sulfur-poisoned LSCF partially recovers during the subsequent exposure to air. Correspondingly, the LSCF particles have a modified morphology covered with numerous nanoparticles, mostly SrSO4, showing the irreversible aspect of the sulfur poisoning. The morphology modification is not concentrated near the electrode/electrolyte interface but over the entire cathode, indicating that the degree of recovery from sulfur poisoning is closely related to the presence of SrO and chemical activity of Sr in the electrodes at the solid-gas interface. These results also show the potential application of LSM for a sulfur sensor available in high-temperature harsh conditions.

Funder

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3