An electricity load forecasting model based on multilayer dilated LSTM network and attention mechanism

Author:

Wang Ye,Jiang Wenshuai,Wang Chong,Song Qiong,Zhang Tingting,Dong Qi,Li Xueling

Abstract

From national development to daily life, electric energy is integral to people’s lives. Although the development of electricity should be expected, expansion without restriction will only result in energy waste. The forecasting of electricity load plays an important role in the adjustment of power enterprises’ strategies and the stability of power operation. Recently, the electricity-related data acquisition system has been perfected, and the available load information has gradually reached the minute level. This means that the related load series lengthens and the time and spatial information of load become increasingly complex. In this paper, a load forecasting model based on multilayer dilated long and short-term memory neural network is established. The model uses a multilayer dilated structure to extract load information from long series and to extract information from different dimensions. Moreover, the attention mechanism is used to make the model pay closer attention to the key information in the series as an intermediate variable. Such structures can greatly alleviate the loss in the extraction of long time series information and make use of more valid historical information for future load forecasting. The proposed model is validated using two real datasets. According to load forecasting curves, error curve, and related indices, the proposed method is more accurate and stable in electricity load forecasting than the comparison methods.

Funder

Science and Technology Project of State Grid

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference47 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LSTM Networks for Home Energy Efficiency;Designs;2024-08-09

2. A short-term electricity load forecasting method integrating empirical modal decomposition with SAM-LSTM;Frontiers in Energy Research;2024-06-17

3. Residential electricity prediction based on GA-LSTM modeling;Energy Reports;2024-06

4. Performance Evaluation of Sequence Model Architectures for Load Forecasting: A Comparative Study;2024 International Workshop on Artificial Intelligence and Machine Learning for Energy Transformation (AIE);2024-05-20

5. Load Forecasting using GNN-LSTM Attention Mechanism with Low-Frequency Data;2024 IEEE International Systems Conference (SysCon);2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3