“Reverse combustion” of carbon dioxide in water: The influence of reaction conditions

Author:

Quintana-Gómez Laura,Connolly Matthew,Shehab Amal K.,Al-Shathr Ali,McGregor James

Abstract

The synthesis of value-added organic products from the hydrothermal conversion of CO2 and H2O has been demonstrated, revealing the impact that reaction conditions have on the product distribution and yield. CO2 has the potential to become a valuable feedstock for the chemicals sector, in part displacing fossil resources and improving the economics of carbon capture. Herein the conversion of CO2 with H2O, in the absence of gas-phase H2, to methanol and other products is shown to occur under sub-critical water conditions in the presence of iron as a reductant and catalyst: this process can be considered as a form of “reverse combustion”. The influence of reaction temperature between 200–350°C and CO2:O2 mole ratio from 9 to 119 (in addition to pure 100% CO2) have been investigated in the presence of Fe powder. The influence of reaction time has also been investigated, employing Fe3O4 as a catalyst. Product analysis is conducted by GC-MS and MS for liquid- and gas-phase products respectively, while SEM and XRD are employed to analyse morphological changes in the catalyst and TPO investigates any coke deposited during reaction. Methanol is the major product formed at all conditions investigated, with a maximum concentration of 8 mmol L−1 after 12 h of reaction, or after 4 h in the presence of oxygen. Acetone and ethanol are also formed, although in smaller quantities than methanol, with larger-chained species also present. An inverse relationship is observed between acetone and ethanol concentrations. Based on the analysis of the reaction data it is hypothesized that ethanol and acetone may be competitively produced in one reaction pathway, while methanol is produced in an independent, parallel, pathway. The observation of acetaldehyde in the gas-phase at all studied conditions suggests that acetone may be produced from the dehydrogenation of ethanol via an acetaldehyde intermediate; catalyzed by zero-valent iron sites. Morphological characterization indicates that the catalysts are stable under the reaction conditions. These studies facilitate the development of improved catalysts and processes for the hydrothermal conversion of CO2, allowing further development of this promising sustainable process.

Funder

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3