Smart and Solar Greenhouse Covers: Recent Developments and Future Perspectives

Author:

Maraveas Chrysanthos,Loukatos Dimitrios,Bartzanas Thomas,Arvanitis Konstantinos G.,Uijterwaal Johannes Franciscus (Arjan)

Abstract

The examination of recent developments and future perspectives on smart and solar greenhouse covers is significant for commercial agriculture given that traditional greenhouse relied on external energy sources and fossil fuels to facilitate lighting, heating and forced cooling. The aim of this review article was to examine smart and solar materials covering greenhouse. However, the scope was limited to intelligent PhotoVoltaic (PV) systems, optimization of some material properties including smart covers, heat loading and the use of Internet of Things (IoT) to reduce the cost of operating greenhouse. As such, the following thematic areas were expounded in the research; intelligent PV systems, optimization of the Power Conversion Efficiency (PCE), Panel Generator Factor (PGF) and other material properties, heat loading future outlook and perspectives. The intelligent PV section focused on next-generation IoT and Artificial Neural Networks (ANN) systems for greenhouse automation while the optimization of material parameters emphasized quantum dots, semi-transparent organic solar cells, Pb-based and Pb-based PVs and three dimensional (3D) printing. The evaluation translated to better understanding of the future outlook of the energy-independent greenhouse. Greenhouse fitted with transparent PV roofs are a sustainable alternative given that the energy generated was 100% renewable and economical. Conservative estimates further indicated that the replacement of conventional sources of energy with solar would translate to 40–60% energy cost savings. The economic savings were demonstrated by the Levelized cost of energy. A key constraint regarded the limited commercialization of emerging innovations, including transparent and semitransparent PV modules made of Pb-quantum dots, and amorphous tungsten oxide (WO3) films, with desirable electrochromic properties such as reversible color changes. In addition to intelligent energy harvesting, smart IoT-based materials embedded with thermal, humidity, and water sensors improved thermal regulation, frost mitigation and prevention, and the management of pests and disease. In turn, this translated to lower post-harvest losses and better yields and revenues.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3