High-entropy approach to double perovskite cathode materials for solid oxide fuel cells: Is multicomponent occupancy in (La,Pr,Nd,Sm,Gd)BaCo2O5+δ affecting physicochemical and electrocatalytic properties?

Author:

Dąbrowa Juliusz,Stępień Anna,Szymczak Maria,Zajusz Marek,Czaja Paweł,Świerczek Konrad

Abstract

High-entropy (La,Pr,Nd,Sm,Gd)BaCo2O5+δ double perovskite-type oxide having an equimolar, high-entropy, A-site-layered arrangement of cations is synthesized for the first time. A modified Pechini method, followed by calcination and sintering at 1,100°C helps in obtaining a single-phase, homogenous material with tetragonal I4/mmm symmetry. In situ X-ray diffraction and dilatometric studies show excellent phase stability up to 1,100°C in air, with the average thermal expansion coefficient of 23.7∙10–6 K−1 within the 25–1,100°C range. Total electrical conductivity of the metallic character exceeds 1,600 S cm−1 at room temperature. Equilibrated oxygen content at room temperature is determined as 5.69. The cathodic polarization resistance of the (La,Pr,Nd,Sm,Gd)BaCo2O5+δ layers, manufactured on the La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM) solid electrolyte of proved inertness, is as low as 0.037 Ω cm2 at 900°C, and 0.175 Ω cm2 at 750°C. The determined value of the power density in the LSGM-based, electrolyte-supported (thickness ca. 200 μm) fuel cell reaches 857 mW cm−2. These results indicate possible applicability of the developed cathode material for solid oxide fuel cells, making it also one of the best-performing high-entropy air electrodes reported until now. However, the determined physiochemical characteristics of the material indicate a relatively limited influence of the high-entropy A-site arrangement in comparison to the conventional analogs, including the synthesized Nd0.88Sm0.12Co2O5+δ composition, characterized by the same effective radius of the lanthanide cations.

Funder

Narodowe Centrum Nauki

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3