A two-stage robust generation expansion planning framework for regional integrated energy systems with carbon growth constraints

Author:

Nan Junpei,Feng Jieran,Deng Xu,Guan Li,Sun Ke,Zhou Hao

Abstract

After proposing the carbon peaking and carbon neutrality target, China further proposed a series of specific carbon emission growth limit sub-targets. How to decarbonize the energy system to ensure the realization of the carbon growth limit sub-targets is a meaningful topic. At present, generation expansion planning of renewable energy in integrated energy systems has been well studied. However, few of the existing studies consider specific carbon emission growth targets. To address this research gap, a two-stage robust generation expansion planning framework for regional integrated energy systems with carbon growth constraints is proposed in this paper, which takes into account multiple uncertainties. In this framework, the objective function is to minimize the total operation cost and wind turbine investment cost. The first stage is the decision-making level of the wind turbine capacity configuration scheme. The second stage is the optimal economic dispatching in the worst-case scenario, which is a bi-level problem of max-min form. Thus, the two-stage robust optimization framework constitutes a problem of min-max-min form, which is pretty hard to solve directly with a commercial solver. Therefore, a nested column-and-constraint generation algorithm is adopted and nested iterations are performed to solve the complex problem. Finally, case studies are carried out on a regional electric-gas integrated energy system. The MATLAB/YALMIP simulation platform with the Gurobi solver is used to verify the effectiveness and superiority of the proposed framework. Compared with other four cases, 5,000 Monte Carlo scheduling tests demonstrate that the proposed framework can ensure the system carbon emission to be controlled within a certain limit even in the worst scenario. Due to the consideration of multiple uncertainties, the proposed framework planning results are both robust and economical for investment. This study can provide theoretical support for the actual regional integrated energy system to achieve a certain carbon growth target.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference31 articles.

1. Dynamic robust generation–transmission expansion planning in the presence of wind farms under long‐ and short‐term uncertainties;Ahmadi;IET Generation, Transm. Distribution,2020

2. The gas transmission problem solved by an extension of the simplex algorithm;De Wolf;Manag. Sci.,2000

3. Power system planning with increasing variable renewable energy: A review of optimization models;Deng;J. Clean. Prod.,2020

4. Research review on optimal scheduling considering wind power uncertainty;Du;Zhongguo Dianji Gongcheng Xuebao/Proceedings Chin. Soc. Electr. Eng,2022

5. Two-layer game theoretic microgrid capacity optimization considering uncertainty of renewable energy;Fang;IEEE Syst. J.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3