A novel primary and backup relaying scheme considering internal and external faults in HVDC transmission lines

Author:

Swetapadma Aleena,Agarwal Shobha,Abdelaziz Almoataz Y.,Kotb Hossam,AboRas Kareem M.,Flah Aymen,Shouran Mokhtar

Abstract

Discrimination of different DC faults near a converter end of a DC section consisting of a filter, a smoothing reactor, and a transmission line is not an easy task. The faults occurring in the AC section can be easily distinguished, but the internal and near-side external faults in the DC section are very similar, and the relay may cause false tripping. This work proposes a method to distinguish external and internal faults occurring in the DC section. The inputs are the voltage signals at the start of the transmission line and the end of the converter filter. The difference in voltage signals is calculated and given to an intelligent controller to detect and discriminate the faults. The intelligent controller is designed using machine learning (ML) and deep learning (DL) techniques for fault detection. The long short-term memory (LSTM-) based relay gives better results than other ML methods. The proposed method can distinguish internal from external faults with 100% accuracy. Another advantage is that a primary relay is suggested that detects faults quickly within a fraction of milliseconds. Nevertheless, another advantage is that a backup relay has been designed in case the primary relay cannot operate. Results show that the LSTM-based protection scheme provides higher sensitivity and reliability under different operation modes than the conventional traveling wave-based relay.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3