Distributed algorithm without iterations for an integrated energy system

Author:

Tan Jiaming,Liu Xinying

Abstract

Existing energy management methods for integrated energy systems are mostly in distributed communication and computation now, need a large number of iterations, and each time of iteration needs lots of communication and computation. For this reason, on one hand, the iteration may cause energy-delay. On the other hand, iteration will significantly increase the communication and computation burden. The integrated energy systems contain a variety of devices and energy resources (including renewable energy resources), so the communication and computation burden is already very high. If the communication and computation cannot be solved very well, the cost functions of each device need to be much easier to ensure the operation of the system and their systematic error will be much larger. For this reason, the result of optimization will be much worse because of the accuracy of cost functions. The greatest challenge of this issue is to establish an algorithm without iteration. For handling this issue, first, we adopt the theoretical demonstration to prove that if all prices of all devices are the same, the optimization will be realized and the instantaneous price is the one-order derivative. (we assume the relationship between the operating cost and the energy flow of each device as the convex cost functions.) Second, we reshape all cost functions. Third, we change the function to the total of the foregoing functions in the directed annular path and adopt the total function of the hole system to solve the energy price. Last, we use the price to ensure their operating condition. Our theoretical demonstration has already proved the optimization, convergence, the plug and play performance, scalability, and the emergency scheduling performance of the annular partial differential algorithm (APDA).

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference37 articles.

1. Internal combustion engine as a new source for enhancing distribution system resilience;Abessi;J. Mod. Power Syst. Clean Energy,2021

2. Distributed consensus-based economic dispatch with transmission losses;Binetti;IEEE Trans. Power Syst.,2014

3. Online distributed neurodynamic optimization for energy management of renewable energy grids;Chang;Int. J. Electr. Power & Energy Syst.,2021

4. Distributed optimal active power control of multiple generation systems;Chen;IEEE Trans. Ind. Electron.,2015

5. Dynamic state estimation for integrated electricity-gas systems based on extended Kalman filter;Chen;CSEE J. Power Energy Syst.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3