A novel cloud-edge collaboration based short-term load forecasting method for smart grid

Author:

Wang Ai-Xia,Li Jing-Jiao

Abstract

With the increasing development of smart grid technology, short-term load forecasting becomes particularly important in power system operation. However, the design of accurate and reliable short-term load forecasting methods and models is challenging due to the volatility and intermittency of renewable energy sources, as well as the privacy and individual characteristics of electricity consumption data from user data. To overcome this issue, in this paper, a novel cloud-edge collaboration short-term load forecasting method is proposed for smart grid. In order to reduce the computational load of edge nodes and improve the accuracy of node prediction, we use the method of building a model pre-training pool to train multiple pre-training models in the cloud layer at the same time. Then we use edge nodes to retrain the pre-trained model, select the optimal model and update the model parameters to achieve short-term load forecasting. To assure the validity of the model and the confidentiality of private data, we utilize the model pre-training pool to minimize edge node training difficulty and employ the approach of secondary edge node training. Finally, extensive experiments confirm the efficacy of our proposed method.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3