Power Management of Hybrid Grid System With Battery Deprivation Cost Using Artificial Neural Network

Author:

Riyaz Ahmed,Sadhu Pradip Kumar,Iqbal Atif,Tariq Mohd,Urooj Shabana,Alrowais Fadwa

Abstract

Continuous power supply in an integrated electric system supplied by solar energy and battery storage can be optimally maintained with the use of diesel generators. This article discusses the optimum setting-point for isolated wind, photo-voltaic, diesel, and battery storage electric grid systems. Optimal energy supply for hybrid grid systems means that the load is sufficient for 24 h. This study aims to integrate the battery deprivation costs and the fuel price feature in the optimization model for the hybrid grid. In order to count charge–discharge cycles and measure battery deprivation, the genetic algorithm concept is utilized. To solve the target function, an ANN-based algorithm with genetic coefficients can also be used to optimize the power management system. In the objective function, a weight factor is proposed. Specific weight factor values are considered for simulation studies. On the algorithm actions, charging status, and its implications for the optimized expense of the hybrid grid, the weight factor effect is measured.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3