Abstract
Catalytic conversion of the greenhouse gas CO2 into value-added chemicals and fuels is highly beneficial to the environment, the economy, and the global energy supply. Metal–organic frameworks (MOFs) are promising catalysts for this purpose due to their uniquely high structural and chemical tunability. In the catalyst discovery process, computational chemistry has emerged as an essential tool as it can not only aid in the interpretation of experimental observations but also provide atomistic-level insights into the catalytic mechanism. This Mini Review summarizes recent computational studies on MOF-catalyzed CO2 conversion through different types of reactions, discusses about the usage of various computational methods in those works, and provides a brief perspective of future works in this field.
Funder
Welch Foundation
University of Texas Rio Grande Valley
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献