Geospatial segmentation of high-resolution photovoltaic production maps for Switzerland

Author:

Ratnaweera N.,Kahl A.,Sharma V.

Abstract

Until last year, most of Switzerland’s photovoltaic (PV) installations were built on roof tops. But the amount added is not enough to reach the country’s energy transition goals. With the adjustments of September 2023, the government incentivizes large-scale, free-standing photovoltaic installations. It is now essential to identify the best installation locations and to accurately estimate their production potential. Past studies have assessed different landcover classes, but much of the efforts have gone into separating out zones that are not suitable for PV plants; for technical, economical and also legislative reasons. All along, the underlying radiation data that was used to compute the local energy yield remained at a spatial resolution > 1 km. Given the complex terrain of the southern half of the country, this resolution is not high enough to capture the local variability in production potential. Our study introduces a new methodology to derive solar irradiance at a very high resolution of 25 m. Satellite data is combined with high resolution terrain information to compute accurate horizons and to account for local shading effects. These base radiation maps are then converted into potential electricity production from a PV panels. A comparison of the production from a typically chosen panel tilt with the production that can be achieved when the tilt is locally optimized based on the high-resolution radiation maps underlines the value of our new method. In a first application, this data set was used to estimate the lumped production potential of two major landcover classes in Switzerland: agricultural land and water surfaces, each of them divided into two subclasses. The geospatial segmentation was based on land use maps and the total available area within each class was calculated. Comparing the results to the production potential from Swiss roofs shows that these newly incentivized installation areas have a much higher production potential than the conventional roofs; both, in an absolute sense of total potential production (roofs: 120 TWh/a, agricultural: 2,250 TWh/a, water: 210 TWh/a), and in a relative sense of energy yield per installed capacity, especially in winter (roofs <50kWh/m2, agricultural >100kWh/m2, water 100kWh/m2).

Funder

Bundesamt für Energie

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3