Practical Method for Data-Driven User Phase Identification in Low-Voltage Distribution Networks

Author:

Yu Huang,Wu Yufeng,Guan Weiling,Zhang Daolu,Yu Tao,Liu Qianjin

Abstract

For low-voltage distribution networks (LVDNs), accurate models depicting network and phase connectivity are crucial to the analysis, planning, and operation of these networks. However, phase connectivity data in the LVDN are usually incorrect or missing. Wrong or incomplete phase information collected could lead to unbalanced operation of three-phase distribution systems and increased power loss. Based on the advanced measurement infrastructure (AMI) in the development of smart grids, in this study, a novel data-driven phase identification algorithm is proposed. Firstly, the method involves extracting features from voltage–time matrices using a non-linear dimension reduction algorithm. Secondly, the density-based spatial clustering of applications with noise (DBSCAN) algorithm is used to divide customers into clusters with arbitrary shape. Finally, the algorithms were tested with the IEEE European Low Voltage Test Feeder of the IEEE PES AMPS DSAS Test Feeder working group. The results showed an accuracy of over 90% for the method.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference22 articles.

1. Distribution Test Feeders2019

2. Digital Applications in Implementation of Smart Grid;Islam,2016

3. Efficient Experience Replay Based Deep Deterministic Policy Gradient for AGC Dispatch in Integrated Energy System;Li;Appl. Energ.,2021

4. PLC-enabled Low Voltage Distribution Network Topology Monitoring;Lisowski;IEEE Trans. Smart Grid.,2019

5. Practical Method for Mitigating Three-phase Unbalance Based on Data-Driven User Phase Identification;Liu;IEEE Trans. Power Syst.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3