Unified dispatch of grid-connected and islanded microgrids

Author:

Wodicker Mackenzie Robert,Nelson James,Johnson Nathan Gregory

Abstract

This work develops microgrid dispatch algorithms with a unified approach to model predictive control (MPC) to (a) operate in grid-connected mode to minimize total operational cost, (b) operate in islanded mode to maximize resilience during a utility outage, and (c) utilize weighting factors in the grid-connected objective function to preserve islanded capability (on-site fuel reserves, battery state of charge) to enhance resilience in the potential event of an unplanned grid outage. Resilience is defined using microgrid survivability (probability to serve 100% of critical load), autonomy (duration of time to serve 100% of critical load), and unserved energy (curtailed critical load) for a target of 7 days during a grid outage. The developed methods are applied to a military microgrid with 2,250 kW of diesel generation, 3,450 kW/13,800 kWh battery storage, and 16,479 kW of solar photovoltaics. Sensitivity analysis is conducted to determine the selection of weighting factors to have the best impact on three developed objectives: grid-connected economics, islanded resilience, and carbon intensity. Optimal weighting factors reduce operating costs by 0.1%, increase survivability by 3.9%, increase autonomy by 16.7%, reduce unserved energy by 94.1%, and increase carbon intensity by 2.5%.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference67 articles.

1. Reliability modeling of PV systems based on time-varying failure rates;Abunima;IEEE Access,2020

2. Climate change and natural disasters: scientific evidence of a possible relation between recent natural disasters and climate change;Anderson;Policy Dep. Econ. Sci. policy,2006

3. A distributed control approach for enhancing smart grid transient stability and resilience;Ayar;IEEE Trans. Smart Grid,2017

4. A non-linear convex cost model for economic dispatch in microgrids;Bhattacharjee;Appl. energy,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3