Integrating economic load dispatch information into the blockchain smart contracts based on the fractional-order swarming optimizer

Author:

Khan Babar Sattar,Qamar Affaq,Wadood Abdul,Almuhanna Khalid,Al-Shamma Abdullrahman A.

Abstract

The modern power generation systems are increasing their reliance on high penetrations of distributed energy resources (DERs). However, the optimal dispatching mechanisms mainly rely on central controls which receive the load demand information from the electricity utility providers and allocate the electricity production targets to participating generating units. The lack of transparency and control over the DER fuel inputs makes the physical power purchase agreements (PPAs) a cumbersome task. This research work proposes an innovative fractal moth flame optimization (FMFO) approach to tackle the problem of integrated load dispatch (ILD). The proposed methodology provides a mechanism to integrate the information of the proposed optimizer, i.e., FMFO into the smart contracts enabled by the blockchain technology. This problem entails the allocation of loads to power-generating units in a manner that minimizes the total generation cost in a decentralized manner. To improve the efficiency of dispatch operations in the presence of a substantial integration of wind energy, this study proposes a novel framework based on the principles of fractal heritage, drawing inspiration from the classical MFO method. To assess the effectiveness and adaptability of the algorithm suggested, various non-convex scenarios in the context of optimization for ILD are considered. These scenarios incorporate valve-point loading effects (VPLEs), capacity limitations, power plants with multiple fuel options, and the presence of stochastic wind (SW) power uncertainty, following a Weibull distribution. The findings demonstrate exceptional performance in terms of minimizing fuel generation costs compared to traditional algorithms.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3