Author:
Zhang Hongwei,Zhao Mingyuan,Li Yanbing,Liu Junqing,Liang Wenbin
Abstract
With the continuous increase of the grid-connected proportion of intermittent renewable energy, in order to ensure the reliability of smart grid operation, it is urgent to improve the operational flexibility of thermal power plants. Electric heat storage technology has broad prospects in terms of in-depth peak shaving of power grids, improving new energy utilization rates and improving the environment. It is an important means to promote electric energy substitution. In this study, the economics of technical application scenarios are compared and analyzed, the principle of solid heat storage technology is discussed, and its application in heating fields such as industrial steam, district heating, and deep peak regulation of congeneration units is expounded. The results indicate that in the scenario where the peak shaving subsidy and the heat storage duration are the same, as the unit output increases, the investment recovery period increases. Moreover, the results also indicate that in the 0.3 yuan/kW power market peaking subsidy scenario, only when the unit output is 0 and the heat storage time is greater than 8 h, the investment can be recovered in 5 years, while in the 0.7 yuan/kW power market peaking subsidy scenario, except for the scenario where the unit output is 40% and the heat storage time is 7 h, the investment cannot be recovered; in other scenarios, the investment can be recovered within 5 years.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Reference76 articles.
1. Joint energy management and energy trading in residential microgrid system;Ahmad;IEEE Access,2020
2. The value of thermal storage technology in integrated energy system;Bai;Distribution Util.,2019
3. Optimization methods applied to renewable and sustainable energy: A review;Baños;Renew. Sustain. Energy Rev.,2011
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献