Author:
Qin Boyu,Shi Wen,Fang Ruoquan,Wu Dongyang,Zhu Yu,Wang Hongzhen
Abstract
High penetration of renewable energy is becoming an important development trend in new generation power system. However, frequent extreme weather events and fragile renewable energy sources pose a huge challenge to the power system resilience. As an important support technology of renewables, energy storage system is of great significance in improving the resilience of the power system. In this paper, a resilience enhancement method for power systems with high penetration of renewable energy based on underground energy storage systems (UESS) is proposed. Firstly, a resilience assessment model is established and the influence of extreme weather is quantified as the failure rate of power system components. Secondly, a bi-level optimization model for UESS operation and planning under extreme weather is built, and the life cycle of UESS is considered. Finally, taking the modified IEEE RTS-79 as an example, the optimal scheme for UESS configuration and operation is given, the investment and effectiveness of UESS is also analyzed. The results show that UESS can significantly enhance the power system resilience under extreme weather events.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献