Master–slave game operation scheduling strategy of an integrated energy system considering the uncertainty of wind and solar output

Author:

Zhang Xiaohan,Shen Jin

Abstract

Introduction: With the development of the energy market and the gradual rise of emerging market players, the linkage of interests between energy sources and loads in the Integrated Energy System (IES) has become increasingly complex. Additionally, the reliability of the system has been impacted by the growing proportion of renewable energy output.Methods: To address the challenges posed by the above issues. This paper first proposes an operational strategy for an integrated energy system that incorporates the uncertainty of wind and solar output using a master-slave game approach. To enhance system robustness and cost-effectiveness, the paper introduces the information gap decision theory (IGDT). Second, building on this foundation, the system operator is considered as the leader, adding a tiered carbon trading mechanism and cloud energy storage system, and building a system revenue maximization model. Then, the user is regarded as the follower, and an optimization model is developed based on integrated demand response (IDR). Finally, the two-layer model is converted into a mixed-integer linear programming problem (MILP) to be solved by the Karush-Kuhn-Tucker conditions (KKT) combined with the big M method.Results: The analysis of the example shows that according to the difference of the decision maker’s attitude towards risk, different scheduling schemes can be obtained through the two perspectives of risk-seeking and risk-avoiding, which can provide guidance for the dynamic operation of the system, and at the same time, the users can be guided by the energy differentials to reasonably use the energy under this strategy.Discussion: Therefore, the proposed strategy in this paper can balance the economy and robustness of the system.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3