Power Grid Material Demand Forecasting Based on Pearson Feature Selection and Multi-Model Fusion

Author:

Dai Zhou,Wang Gang,Bian Ruien,Deng Chaozhi

Abstract

The demand projection of power grid materials can furnish an effective support for the management of power grid materials. Due to variations in the data distribution of individual districts and diversity of materials, a single forecasting model is incapable of accurately predicting the demand for all types of materials. Moreover, for the data-driven network model, the effect of the model has a strong correlation with the quality of its input parameters. To address these problems, this study proposes a power grid material demand forecasting model based on feature selection and multi-model fusion. The first step in this regard is the usage of Pearson coefficient in the selection of main characteristic parameters from original parameters and using them as the input of the network model. Then, stacking fusion algorithm is used to fuse multiple basic models. At last, the proposed method mentioned in this study is tested on a real dataset. The results depict that the proposed method can fully integrate the advantages of various basic models with higher accuracy and generalization ability.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3