A Fault Signal Processing Method Based on An Improved Prony Algorithm

Author:

Yang Nan,Lu Yanming,Zhang Jianmei,Zhang Zhenzhen,Ding Li,Yang Cong,Dong Zhengqiang,Liu Songkai,Xiong Wei,Zhu Binxin,Zhang Lei,Huang Yuehua,Zhang Xin

Abstract

The fault of power systems introduces a severe challenge in terms of fault recording analysis, and the traditional Prony method cannot perform satisfactorily in the process of signal recordings fitting caused by faults. Therefore, an improved adaptive Prony algorithm is proposed in this article to study the characteristics of fault recordings. Specifically, the search step size is taken as an adaptive variable, and the mean square relative fitting error (MSRFE) is set as the criterion. Then, a large step is employed to rapidly determine an approximate segmentation point in the initial stage of the searching process, and its horizon is gradually reduced to establish an accurate subsegment point. Finally, the Prony algorithm is deployed to analyze the subsegment fitting original signal. The proposed approach has been simulated on an assumed fault signal, and the results validate the accuracy and efficiency of the method.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3