Research on reactive power compensation control method for improving the voltage stability of photovoltaic station area

Author:

Zhang Wei,Zhang Zhe,Dai Yuanyi,Dong Chen,Yu Zhijia,Hu Yue

Abstract

In the case of resistance-inductance lines in PV station area, the problem of voltage overstep is easy to occur. This article proposes a reactive power compensation control method to improve the voltage stability in the photovoltaic power plant area, which addresses the problem of voltage at the point of common coupling (PCC) exceeding the upper limit due to resistance circuits and exceeding the lower limit due to relatively insufficient reactive power output when the output active power is high. The idea is to achieve dynamic adjustment of PCC voltage by paralleling a static reactive power generator (SVG) at the grid connection point and using a variable droop control method. In addition, a reactive power optimization method based on improved particle swarm optimization (IPSO) algorithm is proposed to address the changes in power flow caused by photovoltaic integration in the distribution network system. The proposed improvement method not only effectively reduces network losses but also significantly improves voltage stability.

Publisher

Frontiers Media SA

Reference19 articles.

1. Voltage control of PV-Rich LV networks OLTC-Fitted transformer and capacitor banks;Chao;IEEE Trans. Power Syst.,2016

2. Optimal reactive power dispatch of distribution network considering voltage security;Chenyu,2022

3. Optimal offering strategy for concentrating solar power plants in joint energy, reserve and regulation markets;Gunannan;IEEE Trans. Sustain Energy,2016

4. Verification test of grid stabilization and evaluation of PV module characteristics for large-scale PV generation system;Hiroo,2012

5. Parameter identification of SVG using multilayer coarse-to-fine grid searching and particle swarm optimization;Huimin;IEEE Access,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3