Data-driven method of solving computationally expensive combined economic/emission dispatch problems in large-scale power systems: an improved kriging-assisted optimization approach

Author:

Lin Chenhao,Liang Huijun,Pang Aokang,Zhong Jianwei

Abstract

Combined economic/emission dispatch (CEED) is generally studied using analytical objective functions. However, for large-scale, high-dimension power systems, CEED problems are transformed into computationally expensive CEED (CECEED) problems, for which existing approaches are time-consuming and may not obtain satisfactory solutions. To overcome this problem, a novel data-driven surrogate-assisted method is introduced firstly. The fuel cost and emission objective functions are replaced by improved Kriging-based surrogate models. A new infilling sampling strategy for updating Kriging-based surrogate models online is proposed, which improves their fitting accuracy. Through this way, the evaluation time of the objective functions is significantly reduced. Secondly, the optimization of CECEED is executed by an improved non-dominated sorting genetic algorithm-II (NSGA-II). The above infilling sampling strategy is also used to reduce the number of evaluations for original mathematic fitness functions. To improve their local convergence ability and global search abilities, the individuals that exhibit excellent performance in a single objective are cloned and mutated. Finally, information about the Pareto front is used to guide individuals to search for better solutions. The effectiveness of this optimization method is demonstrated through simulations of IEEE 118-bus test system and IEEE 300-bus test system.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3