Prediction of photovoltaic power generation based on a hybrid model

Author:

Zhang Xiaohua,Wu Yuping,Wang Yu,Lv Zhirui,Huang Bin,Yuan Jingzhong,Yang Jingyu,Ma Xinsheng,Li Changyuan,Zhang Lianchao

Abstract

In order to fully exploit the relationship between temporal features in photovoltaic power generation data and improve the prediction accuracy of photovoltaic power generation, a photovoltaic power generation forecasting method is proposed based on a hybrid model of the convolutional neural network (CNN) and extreme gradient boost (XGBoost). Taking the historical data of China’s photovoltaic power plants as a sample, the high-dimensional mapping relationship of photovoltaic power generation variables is extracted based on the convolutional layer and pooling layer of the CNN network to construct a high-dimensional time-series feature vector, which is an input for the XGBoost. A photovoltaic power generation prediction model is established based on CNN-XGBoost by training CNN and XGBoost parameters. Since it is difficult for a single model to achieve optimal prediction accuracy under different weather conditions, the k-means clustering algorithm is used to group the power datasets and train independent models to improve prediction accuracy. Through the actual data verification of photovoltaic power plants, the proposed photovoltaic power generation prediction model can accurately predict the power, which shows high prediction accuracy and generalization ability compared with other methods.

Publisher

Frontiers Media SA

Reference29 articles.

1. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator;Almonacid;Energy Convers. Manag.,2014

2. Wind power plants hybridised with solar power: a generation forecast perspective;Antonio;J. Clean. Prod.,2023

3. Transient stability prediction method of power system based on XGBoost;Chen;Power Grid Technol.,2020

4. XGBoost: a scalable tree boosting system;Chen,2016

5. Higgs boson discovery with boosted trees;Chen;JMLR Workshop Conf. Proc.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3