Recent advances in data-driven prediction for wind power

Author:

Liu Yaxin,Wang Yunjing,Wang Qingtian,Zhang Kegong,Qiang Weiwei,Wen Qiuzi Han

Abstract

Wind power is one of the most representative renewable energy and has attracted wide attention in recent years. With the increasing installed capacity of global wind power, its nature of randomness and uncertainty has posed a serious risk to the safe and stable operation of the power system. Therefore, accurate wind power prediction plays an increasingly important role in controlling the impact of the fluctuations of wind power to in system dispatch planning. Recently, with the rapid accumulation of data resource and the continuous improvement of computing power, data-driven artificial intelligence technology has been popularly applied in many industries. AI-based models in the field of wind power prediction have become a cutting-edge research subject. This paper comprehensively reviews the AI-based models for wind power prediction at various temporal and spatial scales, covering from wind turbine level to regional level. To obtain in-depth insights on performance of various prediction methods, we review and analyze performance evaluation metrics of both deterministic models and probabilistic models for wind power prediction. In addition, challenges arising in data quality control, feature engineering, and model generalization for the data-driven wind power prediction methods are discussed. Future research directions to improving the accuracy of data-driven wind power prediction are also addressed.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference137 articles.

1. Short-term wind power prediction based on particle swarm optimization-extreme learning machine model combined with Adaboost algorithm;An,2021

2. Regional wind power forecasting system for inner Mongolia power grid;Bai;Power Syst. Technol.,2010

3. The combination of forecasts;Bates;OR,2001

4. Wind_Turbine_Power_Output_Forecasting_Using_Artificial_Intelligence;Bhardwaj,2022

5. A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada;Bigdeli;Renew. Sustain. Energy Rev.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3