Author:
Yang Zhichun,Yang Fan,Chen Jiawen
Abstract
This paper proposes a Lyapunov-based power sharing control scheme and a fixed-time-based distributed optimization algorithm to achieve optimal power sharing of sources in a DC microgrid. The Lyapunov-based controller is designed based on so-called ratio consensus protocol, where it drives the sources to a desired proportional power sharing by regulating the voltage profile of the DC microgrid. The distributed optimization optimizer is established by integrating a finite-time weighted consensus algorithm with an iterative algebraic operation, where it calculates the optimal power dispatch on the target of minimizing the generation cost. The optimizer receives the current output power of the controlled DC microgrid and sends the obtained power dispatch to the power sharing controller as the proportionality coefficients. Both the controller and optimizer are carried out in a fully distributed way. Under the framework of the Lyapunov method, stability analysis of the DC microgrid with the proposed control scheme, as well as convergence and optimality analysis of the distributed optimization algorithm, is provided. However, the influence of the time delay of the controller on the system remains to be further investigated in future work.
Funder
State Grid Hubei Electric Power Co.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献