Optimized LSTM for Accurate Smart Grid Stability Prediction Using a Novel Optimization Algorithm

Author:

Karim Faten Khalid,Khafaga Doaa Sami,El-kenawy El-Sayed M.,Eid Marwa M.,Ibrahim Abdelhameed,Abualigah Laith,Khodadadi Nima,Abdelhamid Abdelaziz A.

Abstract

The stability of smart grids is crucial for ensuring reliable and efficient power distribution in modern energy systems. This paper presents an optimized Long Short-Term Memory model for predicting smart grid stability, leveraging the Novel Guide-Waterwheel Plant Algorithm (Guide-WWPA) for enhanced performance. Traditional methods often struggle with the complexity and dynamic nature of smart grids, necessitating advanced approaches for accurate predictions. The proposed LSTM model, optimized using Guide-WWPA, addresses these challenges by effectively capturing temporal dependencies and nonlinear relationships in the data. The proposed approach involves a comprehensive preprocessing pipeline to handle data heterogeneity and noise, followed by the implementation of the LSTM model optimized through Guide-WWPA. The Guide-WWPA combines the strength of the WWPA with a novel guidance mechanism, ensuring efficient exploration and exploitation of the search space. The optimized LSTM is evaluated on a real-world smart grid dataset, demonstrating superior performance compared to traditional optimization techniques. Experimental Results indicate significant improvements in prediction accuracy and computational efficiency, highlighting the potential of the Guide-WWPA optimized LSTM for real-time smart grid stability prediction. This work contributes to the development of intelligent energy management systems, offering a robust tool for maintaining grid stability and enhancing overall energy reliability. On the other hand, statistical evaluations were carried out to prove the stability and difference of the proposed methodology. The results of the experiments demonstrate that the Guide-WWPA + LSTM strategy is superior to the other machine learning approaches.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3